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A lot of attention is being devoted at present to the study of the process of buckling 
of elastic systems upon the action of compressive loads of great strength. An explanation of 
the experimentally revealed phenomenon has been given by Lavrent'ev and Ishlinskii in [i], 

and it was shown that some higher mode of stability loss grows most intensely (exponentially). 
Since Lavrent'ev and Ishlinskii have used in their theoretical deliberations the simplest mod- 
el of the bending of rods, the appearance of the investigations [2-9] was natural; a numeri- 
cal and theoretical analysis is conducted in these references of the buckling of rods in 
which more exact theories are applied which take into account shear, rotational inertia, and 
finiteness of the propagation velocity of longitudinal disturbances. We note the experimental 
results of [i0, ii], which have revealed the effect of the wave nature of the propagation of 
longitudinal disturbances on the distribution of deflections along the rod. All the investiga- 
tions [2-11] have arrived at the conclusion that the number of the most intensely growing 
mode either coincides with or differs inappreciably from the number of the mode determined in 
[i]. The asymptotes of normal deflection of a rod at most times are obtained in [6-8] with 
longitudinal vibrations taken into account; in the limit of infinite propagation velocity of 
longitudinal disturbances the rate of increase of the deflections [6-8] does not agree with 
the conclusions of [i]. The number of the most intensely growing mode and the rate of in- 
crease of the deflections are refined below. The distribution of deflections along the rod is 
obtained in the case of a finite propagation velocity of longitudinal disturbances; in the 
limit when the velocity mentioned tends to inflnity, the rate of increase of the deflections 
coincides with the results obtained in [i]. 

i. The system of equations which takes into account shear, rotational inertia, and the 
effect of longitudional vibrations on the transverse motions of rods is of the form (e.g., 
see [2, 12]) 

kFG (wx --,)~ + EF [ux (wx + W~)]x + p (x, t) = pFwu; (1.1) 
Elr + kFatwx-- r = P/r (1.2) 

EFuxx = pFutt, (1.3) 

where u(x, t) and w(x, t) are the longitudinal and transverse displacements; @(x, t), inclina- 
tion angle of the tangent to the deflection curve; x and t, longitudinal coordinate and the 
time; E and G, moduli of elasticity and shear; F and I, area and moment of inertia of a trans- 
verse section of the rod; k, mode coefficient of the section; 0, density of the material; p, 
transverse load; and w ~ initial deflection. 

Let a compressive load No significantly higher than the Euler load be applied to a flex- 
ibly fastened rod at rest at t = 0. The following boundary-value problem (lo is the length 
of the rod) is posed for the system (1.1)-(1.3): 

w = O, ~x  = 0  at x =  O, lo, t f > O ;  �9 ( 1 . 4 )  

w(z, O) = O, wt(z, O) = O, r  O) = O, r  O) = O; ( 1 . 5 )  

EFux(O, t ) = - - N o ,  U(/o, t ) =  0 ~ ux(/o, t ) =  0; (1.6) 

u(x, O) = O, ut(x , O) = O. ( 1 . 7 )  

We will consider the time interval up to the first reflection of longitudinal waves from the 
end x = lo. In this case the longitudinal forces are determined (see the problem (1.3), 
(1.6), and (1.7)) in the form 

N(x, t) = EFux = --No x <~ ct, N(z,  t) E 0 ( 1 . 8 )  
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with ct < lo, where c = (E/p)i/2 is the speed of sound, We will proceed to the problem (• 
(1.2), (1.4), and (1.5). A theorem from [6] is used in connection wi~h the solution of this 
problem; the theorem permits treating a linear system instead of the linear initial solution. 
For this linear system of equations in w and @ after the introduction of the function $ = 
$(x, t) 

w = EIr p I ~ t t  , ~ =--kFG~x (1,9) 

we obtain the solving equation 

E+~ +N(~=_ Ex ~ _~ px ~ " ElO==-- pl ~--~--@=tt ptI NW~x 
= =  . - s  = . / + p F O . +  �9 p(~, t) (i. I0) mt = -- "7-#W + kFG 

with the appropriate boundary and initial conditions. The conditions mentioned, which are ob- 
tained from (1.4) and (1.5) with (1.9) taken into account, are rather cumbersome, therefore 
tbey are not given here. 

The dimensionless coordinates 

x l = X / l o ,  ~ = c~l o 

are introduced in Eq. (i.i0) and the boundary and initial conditions. If we omit the index 
next to the new variables, we bave finally the equation 

0 = ~  - -  m ~ O = t  ~ + ~ 2 0 ~  - -  u~m~(r/~)~O=~ ' + u~m~(r/~)~O=tt + ( l o ~ ) ~ O t t  + m~Otttt =/(x,t),  

Nw~x ~ P(X,t) ~ 
] (x, t) = ~i [ ,~ = N (i.Ii) _ kFG --" kFG ]' p '  

~ = No Pe = ='EI E + kG E 
P--~' '--~o ' m , = ~ .  m,= ka , 

where ~ = ~(x, t) is a function; ~o, a parameter which characterizes tbe intensity of loading; 
' ~e' Euler load; ml and m2, parameters associated with taking the rotational inertia and shear 
into account; and r, radius of inertia of the transverse section. Those problems are being 
considered for which no 2 = No/P e >> i. When m~ = m2 = 0, Eq, (i,Ii) changes into the classi- 
cal equation of beam deflection. 

2. First we will conduct an asymptotic analysis of Eq. (i.ii) with the appropriate 
boundary and initial conditions for the simplest case, in which wave processes in the longi- 
tudinal direction are neglected, i.e., 

~s=B~=NolP~, O<~z<~ Zo (c-+oo). (2.1) 

This problem permits separation of the variables (Xn(X) are tbe stability loss modes) 

O =  ~ Tn(t) Xn(x), Xn(x)=sinngx, n = t ,  2 , . . .  ( 2 . 2 )  

After simple rearrangements the following Cauchy problems (fn are the coefficients of 
the Fourier series of the function f) are formulated for the amplitudes Tn(t): 

rn~ (r/lo) ~ T~ ) q- [t A- ~ m l n  ~ (r/lo) ! -  gem, n ' ~  (r/lo)'] T~ -4- (r/lo)' [~4nt - -  ~tn'B ~ - -  ~ e m ~ n ~  (r/lo)Z] Tn --~ /n, 
(2.3) 

r .  (o) = o, (o) = o, = o, (o) = o .  

The equation of problem (2.3) has been written out in a form suitable for the asymptot- 
ic analysis. We note tbat when the simplest model of rod deflection [i] is used the coeffi- 
cients ml = m2 = 0. In each of the terms which contair the coefficients ml or m2, the small 
parameter g = r/lo << i, which cbaracterizes the relative length of the rod, is present. The 
small parameter g enters to the second power into the coefficients of the fourtb, second, and 
zeroth derivatives, but in addition to tbe fourth power for the second derivative, The term 
containing 4 is omitted in what follows. And so the equation of the problem (2.3) differs 
from the simplest equation in terms with small parameters both in the main part (the second 
and third terms) and of the leading derivatives (first term). 
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We will conduct an analysis and construct a solution of the Cauchy proble m (2.3), which 
is perturbed singularly [13]. The solution of the problem (2.3) is separated into a smooth 
part qn(t) and a rapidly oscillating correction s (t) so that 

n 

T. (t) = q. (t) q- 8=s.{ 0 = q~") q- e"g?) Jr ... q- r [s~ ) (t) § 82s~ ) (t) q-...]. (2.4) 

The value of the parameter a = 3 is determined by the form of the boundary conditions of 
the problem (2.3); representations of the functions qn(t) to within an accuracy of g4 and of 

the functions Sn(t) to within an accuracy of s 2 are as follows: 

q~(t) = - q U a o . ) l ~ m ( - a o . l ~ . ) , ~  t - ~ l ~ ao~ < O, 
a~ = t + ~=min~(fflo) ~, ~.(t) --,- ~ for  t ~ = ,  ( 2 . 5 )  

a ~  = ( ff lo)  ~[~4n4 - -  = ~ n ~  = - nSm~n4~ ~ ( ff lo)  ~] ; 

m~lS la  ~/~] c s ~ - z f ~  ~ ~_~ . s~ (t) [ /~ ( -  ao~)'/~ ~ ~ ~ ~ o , ,~  ~ o - ~  ~. ( 2 . 6 )  

Equations (2.5) and (2..6) are derived for exponentially increasing solutions T (t) § 
n 

as t + =; two other kinds of solution T (t) are not given here, since one of them is a llnear 
n 

function of the time, and the other describes vibrations with a bounded amplitude. Following 
[i], we will determine the number n, of the most intensely growing mode of motion, which 
with the specified loading intensity ~ is equal to 

_ ~ t ( 2 . 7 )  
n,  - -  7 i - ~ m ~ l  ~ (r/to)~ 

to ~:ithin an accuracy of e ~. 

And so when refined equations of the Timoshenko type are used, we see that for the 
motion growing most intensely in time (see (2.2), (2.4)-(2.7)) the mode number of buckling 
andthe exponent for this motion are somewhat larger than the number and exponent for the 
motion predicted by the simplest theory [i], and the amplitude corresponding to this mode 
contains, in addition to the growing component [i], a rapidly oscillating component which is 
small in absolute value. The relationships obtained in the limit as r/~o § 0 in (2.4) and 
(2.7) agree witb the expressions given in [i]. 

3. Let us proceed to an analysis of the buckling process wben the wave process of prop- 
agation of longitu( ~al vibrations with c ~ ~ is taken into account, but only as far as the 
first reflection from the end x = i. In solving the equation (i.ii) with the constructed 
solution of propagation of the limiting conditions (1.8) taken into account we have for the 
dimensionless coordinates 

~' ~ = N o / P ~  ~r z<~t ,  ~ - - 0  for ~ > t .  (3.1) 

If the transverse load p(x, t) is such that p(x, t) ~ 0 for x > t, then the maximum 
propagation velocity of disturbances for the system described by Eq. (i.ii) with (3.1) taken 
into account coincides witb the velocity of longitudinal waves in the rod, and consequently 
the conditions 

2 I1 ~ 1  
- -  m z ( r / l o ) � 9  = O, = 0 at x = t ( 3 . 2 )  

are satisfied on the front. After the addition of the boundary conditions at x = 0 (e.g., 
conditions of flexible support) to the conditions (3.2) a problem on a variable interval [14] 
is obtained for Eq. (i. Ii). In order to analyze the process of buckling of a rod upon an in- 
tense longitudinal shock, the asymptote X of the natural modes of stability loss of a rod 
(Timosbenko's model) is investigated: n 

l ( ) "  § ~ [1 - -  m:  (r/Zo) = ( )31 ~ "  = O, 

= ~ =  0 at ' x =  O, �9 m~(rllo)~ ~ =  0 ' = 0  at x = 1. ( 3 . 3 )  

If 

i - -  m z ( r l l o )  2 ~ > 0 ,  ( 3 . 4 )  

the a~ymptote of the eigenfunctions of the problem (3.3) as n § ~ coincides with the natural 
modes of stability loss of a flexibly supported rod X(x) = sin n~x. The constraint (3,4) 
arises due to a certain inconsistency of Timoshenko's model for very short waves [5]. 
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Let us carry further the analysis of the motions of a rod on a variable interval [5]. 
It has been established that those modes are developing most intensely which correspond to 
Eq. (2.7). Let us introduce the following transformation for Eq. (i.ii) with (3.1) taken in- 
to account: 

= t--x. (3.5) 

The time coordinate is transformed such that it is converted into the true time of ac- 
tion of tbe compressive load in a fixed cross section of the rod. After tbe transformations 
(3.5) Eq. (i.ii) contains terms with small factors, which we will omit in the following. Ue 
will restrict ourselves to the construction of the solution of a system with "one" degree of 
freedom which grows most rapidly [5] 

�9 (x, ~) = T(~)X(x), 
X ( ~ = s i n ~ x / l ,  at O~.~x~t, X(x)~-O at x > t ( x < l ) .  

Here l, is the length of a balfwave corresponding to Eq, (2.7). The equation for the 
amplitude T(T) has form (2.3) with null initial conditions; the form of the solution of this 
problem agrees with Eqs. (2.5) and (2.6) if one replaces t by T in the latter and omits the 
index n. We will convert to the old coordinates (see (3.5)). 

We obtain the solution in the form 

I [o( ] 1 
(x, t ) ~ O  for x >  t ( x < t ) .  

(3.6) 

The solution obtained differs somewhat from the solution given in [5]; the wavelengths 
of stability loss and the rates of growth of the deflections agree to within an accuracy out 
to terms in small parameters, and the additional term in the braces of Eq. (3.6) has 
a small factor. The amplitude of the rapidly oscillating component of the solution (3.6) is 
small. When the finiteness of the propagation velocity of longitudional disturbances is 
taken into account, neighboring halfwaves grow as if independently, but the amplitude of the 
deflections decreases exponentially from the impacted end of the rod. 

Solution (3.6) given is in good agreement with natural experiments [i0, ii] and with the 
results of numerical calculations given in [2]. These calculations have revealed the presence 
of a rapidly oscillating component of the solution whose amplitude is small. Tbe computation- 
al results of [3, 4] given in graphical form are smoothed. After returning to dimensional 
coordinates in the representation of solution (3.6), a limiting transition such as c § ~ is possi- 
ble. In this case a solution is obtained for a system with one degree of freedom; the wave- 
length and the growth rate of the deflections for this degree of freedom differ from those 
of [I] only in terms with small parameters. The solution (3.6) obtained does not agree with 
the results of [6-8]. 
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PROBLEM OF PROCESSING MATERIALS BY PRESSURE UNDER CREEPAGE CONDITIONS 

B. V. Gorev, I. D. Klopotov, 
G. A. Raevskaya, and O. V. Sosnin 

The pressure-processing of materials in the hot state is widely used in technology. The 
processing is usually not continuous, and deformation of�9 article is achieved due to '~in- 
stantaneous" plastic deformation , while an increasein temperature, on the one hand, increas- 
es the plasticity of the material, and on the other reduces the force required for the defor- 
mation. 

In recent years a considerable number of investigations have been made on the superplas- 
ticity of materials and the use of this phenomenon for the pressure-processing of materials. 
Superplastic behavior of a material is observed ~ when it is in certain structural states, and 
in certain temperature ranges. �9 in all cases one of the decisive factors which facilitates 
superplastic deformation is slow loading. In such processes time plays an important part and 
deformation of creepage makes the main contribution tO the total irreversible plastic deforma- 
tions. Without dwelling on the physical reason and the similarities and differences in "in- 
stantaneous" plastic deformations and deformations of creepage, which develop with time, from 
the phenomenological point of view it can be stated that irreversible deformations determined 
by the laws of creepage are the initiating factors in superplasticity, In this sense, the 
hot processing of materials with slow loading should really be called "pressure-processing 
of materials under creepage conditions" [i]. Unlike the technological processes of processing 
materials in the superplastic state, processing under creepage conditions is less limited by 
technical difficulties and can be used in practice for all materials, including materials that 
are difficult to deform. 

Publications on the use of creepage processes in the pressure-processing of materials 
have only appeared comparatively recently. In [2-4], neglecting the elastic--plastic compo- 
nents of~e deformation and taking into account only deformation of creepage, solutions have 
been given of the problem of the sagging of a strip of a circular cylinder, longitudinal roll- 
ing, and a number of other problems encountered in technology. In [i, 5] some general consid- 
erations and experimental data on the possibility of using creepage in technological process- 
es are presented, and the advantage of forming articles under slow rather than rapid loading 
conditions is pointed out. In [6] a description is given of a device which can be used in 
appropriate technological processes. But, on the whole, the number of papers on the experi- 
mental and theoretical principles of the use of creepage in the pressure-processing of mate- 
rials is very small, which is undoubtedly the reason for the slow rate of development of this 
process. 

Below we describe experiments which show the advantages of slow loading over fast load-�9 
ing. Using the generally accepted creep relations we give approximate methods of analyzing 
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